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ABSTRACT: The main objective of the Synthetic Teammate project is to develop language and task enabled synthetic agents 
capable of being integrated into team training simulations. To achieve this goal without detriment in team training, the synthetic 
agents must be capable of closely matching human behavior. The initial application for the Synthetic Teammate research is the 
creation of an agent capable of performing the functions of a pilot for an Unmanned Aerial Vehicle (UAV) simulation as part of 
a three-person team.   

 
1. Project Overview 
 
The main objective of the Synthetic Teammate project is 
to develop synthetic agents capable of being integrated 
into team training simulations. To achieve this goal 
without detriment in team training, the synthetic agents 
must be capable of closely matching human behavior 
across several cognitive capacities, such as situation 
assessment, task behavior, and language comprehension 
and generation. The initial application for the synthetic 
teammate research is the creation of an agent capable of 
functioning as the pilot of an Unmanned Aerial Vehicle 
(UAV) within a synthetic task environment (STE) which 
is described in the following section.  
 

2. Synthetic Task Environment 
 
The task environment used for developing the synthetic 
teammate is the Cognitive Engineering Research on 
Team Tasks (CERTT) UAV-STE (Cooke & Shope, 
2005). The CERTT UAV-STE simulates teamwork 
aspects of UAV operations rather than equipment aspects 
(e.g., buttons and dials). The UAV-STE involves three 
interdependent team members, each with a different role. 
The team members are the Data Exploitation Mission 
Planning and Communications operator (DEMPC, the 
planning officer) who is responsible for creating a 
dynamic flight plan, including speed and altitude 
restrictions, an Air Vehicle Operator (AVO, the pilot) 
who controls flight settings and systems, and a Payload 
Operator (PLO, the sensor operator) who monitors sensor 
equipment and takes photographs.  
 
The team members’ common goal is to photograph 
ground targets and this requires interaction between all 
team members. Interaction occurs through a text-based 

communications system. A single UAV-STE mission 
consists of 11-12 ground targets and lasts a maximum of 
40 minutes. However, a mission can end once the team 
photographs all possible targets.  
 
The task requires a high degree of coordination due to 
time pressures and mutual constraints among the team 
member roles. To perform well within the UAV-STE, 
team members must understand their own tasks, and, 
more importantly, coordinate with each other to complete 
their common goal. The UAV-STE therefore provides an 
ideal task environment for developing a synthetic 
teammate. 
 

3. Synthetic Teammate Overview 
 
The Synthetic Teammate project is intended to lead to 
development of a cognitively plausible, yet functional 
synthetic teammate. The core of the system is being 
implemented within the ACT-R cognitive architecture 
(Anderson et al., 2004; Anderson, 2007), reflecting the 
focus on cognitive plausibility. As argued in Ball (2006), 
for inherently human behaviors like language 
comprehension (and generation), the use of a cognitive 
architecture to guide and constrain the implementation of 
a system may actually facilitate, rather than hinder, 
development. The constraints imposed by the cognitive 
architecture push system development in cognitively 
plausible directions which are more likely to lead to 
human-like behavior than purely algorithmic solutions 
which ignore such constraints. Although purely 
algorithmic solutions may provide short-term gains, they 
often lead to long-term difficulties as in a parser which 
processes the linguistic input from right to left—taking 
advantage of the punctuation at the end of a sentence—
but can’t be integrated with a speech recognition system 
or process language incrementally in real-time. 
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Figure 1:  Synthetic Teammate Overview 
 
The major linguistic components of the system include 
text chat based language comprehension and generation 
components, which are under the control of a dialog 
manager (see Figure 1). The linguistic subsystem 
interacts with a situation model component that is a 
spatial-imaginal/propositional representation of the 
current state of affairs as encoded from text chat inputs. 
The situation model component is intended to be a 
computational implementation of the notion of a situation 
model as described in Zwann & Radvansky (1998). The 
situation model component also reflects inputs from the 
visual system via the task behavior component. The task 
behavior component implements the behavior of the 
system, controlling shifts of attention in the visual system 
and motor actions needed to perform the pilot’s tasks. 
Input to the system is mediated by ACT-R’s perceptual 
module and motor actions are mediated by ACT-R’s 
motor module. The perceptual and motor modules are 
ACT-R’s interfaces to the external environment. Each of 
the model components makes use of ACT-R’s declarative 
memory and production system.   

Most of the current research has been focused on 
individual development of the language comprehension 
component, language generation & dialog manager 
components, and task behavior component. The language 
generation & dialog manager components, which were 
developed jointly, have recently been integrated with the 
task behavior component via a “situation superchunk” 
which contains the knowledge needed and generated by 
the components. The situation superchunk will eventually 
be replaced by the situation model component, currently 
being designed. The following sections provide more 
detail for each of the synthetic teammate’s core 
components. 
 

4. Language Comprehension Component 
 
The language comprehension component has been under 
development since the mid 1980’s (Ball, 1991) with a 
hiatus in the 90’s. Originally developed in Prolog, the 
language comprehension component was ported to the 
ACT-R 5 architecture in 2003 (Ball, 2004a). The current 
version runs in ACT-R 6 (Ball, Heiberg, & Silber, 2007). 
The language comprehension component is intended to 
be a domain general system capable of handling a wide 
range of English constructions. There is no assumption 
that the specific domain of application can be used to 
limit the scope of the system. Additions to the model to 
handle the text-chat specific corpus are being made in the 
context of a regression testing capability to insure that the 
broad coverage of the component is maintained.  
 
The language comprehension component is a 
construction-driven processing system (Ball, 2007a) 
based on a linguistic theory of the grammatical encoding 
of referential and relational meaning (Ball, 2007b). The 
linguistic theory is aligned with basic principles of 
Cognitive and Construction Grammar (cf. Langacker, 
1987, 1991). Lexical items in the linguistic input activate 
constructions which drive processing. For example, the 
transitive verb “increase” activates a transitive verb 
construction. This construction, if selected, sets up an 
expectation for an object to occur. The transitive verb 
construction also projects a clausal construction (if one 
hasn’t already been projected by a preceding auxiliary 
verb). The clausal construction sets up an expectation for 
a subject. The subject of the clausal construction is 
typically available in the current context and, if available, 
is integrated into the clausal construction. The absence of 
a subject can trigger projection of an imperative clause 
construction if the verb is in the base form as in “increase 
the altitude”, otherwise a declarative clause construction 
is projected even if the subject is missing (e.g., “increased 
the altitude”). The occurrence of an auxiliary verb 
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preceding the subject can trigger projection of a yes-no 
question construction as in “are you increasing the 
altitude”. If a wh-word precedes the verb, a wh-question 
construction is projected as in “who increased the 
altitude” or “why are you increasing the altitude”.   
 
The language comprehension component processes the 
input incrementally (one word at time), constructing a 
linguistic representation of the input based on the current 
word, constructions activated by the word, and the prior 
context. If necessary, the current input is accommodated 
by adjusting the current representation or coercing the 
current input into that representation without 
backtracking or lookahead. The mechanism of context 
accommodation is part and parcel of the basic left-to-
right, incremental processing mechanism. For example, 
in the processing of “the airspeed restriction”, when 
“airspeed” is processed it is integrated as the head of the 
nominal construction projected by “the”. However, when 
the word “restriction” is processed, the nominal 
construction is adjusted so that “airspeed” functions as a 
modifier, with “restriction” functioning as the head. 
Context accommodation avoids the need to carry forward 
multiple representations in parallel, and yet the model 
still arrives at an appropriate representation at the end of 
processing.  
 
The language processor is highly context sensitive and 
makes use of all available information—lexical, 
syntactic, semantic and pragmatic—in deciding how to 
process a given input. There is no autonomous syntactic 
component or syntactic processor, although grammatical 
information is very important for determining meaning. 
Contextual information is probabilistically summed via 
ACT-R’s parallel spreading activation mechanism to 
yield the best alternative given the current input and 
context. The selected alternative is assumed to be correct 
and the processor proceeds deterministically and serially 
forward. The context sensitive, probabilistic, parallel, 
spreading activation mechanism, combined with a 
mechanism of context accommodation makes a nearly 
deterministic, serial language processing system possible. 
 
Recent modifications to the language comprehension 
component have focused on the processing of long-
distance dependencies—demonstrating that the system is 
capable of handling such theoretically important 
constructions (e.g. the theoretically important examples 
“hei is eager ti to please” vs. “hei is easy to please ti”).  
 
The language comprehension component is also being 
extended to handle the text-based communication corpus 
that was collected in an experiment involving human 
subjects and the UAV-STE. The text chat corpus is full of 

interesting variability in the form of linguistic input (e.g. 
typos, spelling variants, morphological variants, 
abbreviations, acronyms, concatenations, new coinages).  
In order to handle this variability, lower level processes 
of word recognition have been added to the language 
comprehension component. The spreading activation 
mechanism of ACT-R allows the model to retrieve words 
from the lexicon that are not an exact match to the input. 
Letters and trigrams in the input spread activation to the 
words containing those letters and trigrams in the mental 
lexicon. These processes and encodings are based on the 
Interactive Activation model of word recognition 
(McClelland and Rumelhart 1981), with the addition of 
trigrams based on the “letter triples” as later described by 
Seidenberg and McClelland (1989).  Though inspired by 
the findings of word recognition studies, this 
subcomponent of the model does not model a word 
recognition task. It is embedded in the language 
comprehension component as a whole; therefore, the 
effects of context and previous activation levels must be 
taken into consideration when encoding each individual 
word (Freiman & Ball, in press). 
 
5. Language Generation & Dialog Manager 
Components 
 
The language generation and dialog manager components 
were developed to capture the dynamic nature of human 
language production, following earlier approaches 
involving dynamic dialog constraints (Ericcson, 2004), 
accommodation (Matessa, 2000), and adaptive content 
selection (Walker et al., 2004). The focus is on selecting 
the best utterance from a set of possible utterances which 
were derived from a UAV-STE experiment involving 
spoken communication. The approach is akin to 
overgeneration-and-ranking approaches (Varges, 2006). 
 
The model uses Optimality Theory (Prince & Smolensky, 
1993; 2004) to select an optimal utterance, given a set of 
utterances and a set of constraints on utterances. 
Constraints are simple, violable, conflicting, and 
motivated by cross-linguistic evidence. Constraints are 
arranged in a strict dominance hierarchy; the optimal 
utterance is the one that least violates the hierarchy.  
 
Constraint ranking is expressed through ACT-R 
spreading activation. Activation spreads from constraints 
to utterances to determine which utterance is retrieved 
from memory. The most important constraint spreads the 
most activation and has the greatest effect on retrieval. 
Factors from the situation component dynamically affect 
the constraint ranking, possibly reranking constraints, and 
providing a principled variation in utterances over time. 



The language generation component is based on retrieval 
of complete utterances with one or two variabilized slots. 
These utterance templates are akin to constructions, but 
there is currently no capability to integrate multiple 
constructions together, as in the language comprehension 
component. Purely constraint based approaches like OT 
are good at selecting among competing alternatives, but 
require additional mechanisms to support productive 
generation of alternatives from smaller linguistic units.  
 
The dialog manager component models the push and pull 
of information to and from the AVO. It uses a temporal 
module extension to ACT-R to avoid repeatedly asking 
for the same information.  
 

6. Task Behavior Component 
 
The task behavior component was developed to fly the 
UAV from waypoint to waypoint in a cognitively 
plausible manner. Flying to waypoints involves 
interacting with the UAV-STE to queue the correct 
waypoint and enter the correct course. The pilot must also 
set the UAV airspeed and altitude within restrictions 
provided by the sensor operator (PLO) and planning 
officer (DEMPC). The task model interacts with the 
UAV-STE using the same devices as humans––it uses the 
mouse pointer to interact with the UAV flight controls in 
a point-and-click fashion, and uses the keyboard to send 
and receive messages to and from its teammates.  
 
The task model was developed using a combination of 
hierarchical task analysis and NGOMSL (Kieras, 1988). 
The analysis identified the goals necessary for 
accomplishing flight from one waypoint to another, the 
sequence flexibility of the goals, and commonalities 
across all goals. 
 
The goals associated with the task behavior component 
include setting flight parameters (i.e., altitude, speed, and 
course), setting waypoints, monitoring alarms and 
warnings, and monitoring the UAV flight status (i.e., the 
distance from upcoming waypoint and the time to the 
next waypoint, etc.). Each of these goals is divided into 
three subgoals, obtaining desired state information, 
checking current state information and changing the 
current state to the desired state. Each subgoal updates 
the appropriate information within the situation 
component (i.e., situation superchunk). 
 
The first component, obtaining, is modeled to obtain the 
desired state information. Once this is done, the second 
component, checking, is executed to determine if the 
desired state differed from the current state. When there 

is a discrepancy, the model performs the third 
component, changing, to modify the task to a desired 
state. As a result of breaking each of the task goals into 
three components, there has been a substantial re-use of 
production rules within the task model.  
 
For example, assume the task behavior component has 
received the next waypoint from the planning officer. 
This information is stored in the situation model 
component and used to retrieve the goal from memory for 
checking waypoint information. To check the next 
waypoint value, the model attends and encodes the 
“queued waypoint” value on the GUI and determines if 
the queued waypoint needs to be adjusted (i.e., obtaining 
and checking). If the waypoint needs to be adjusted, then 
the task model spawns a goal to attend to the waypoint 
setting information and set the desired waypoint using the 
appropriate mechanism (i.e., changing). 
 

7. Situation Model Component 
 
The Situation Model component represents the current 
situation as informed by the linguistic input, the task 
environment, the discourse context, and salient 
background knowledge. The situation model constitutes 
the primary meaning representation of the system, 
although the linguistic representations that get mapped 
into the situation model also encode important aspects of 
meaning. The situation model component is responsible 
for grounding the meaning of referring expressions in the 
linguistic input in the objects and situations from the task 
environment, discourse context and background 
knowledge which are encoded in the situation model. 
 
The concept of a Situation Model originates in the 
research of Kintsch and van Dijk (1978) and corresponds 
to a mental representation of the propositional content of 
a text—including the addition of propositions 
corresponding to inferences that are derived from the 
text. The term “situation model” implies that this 
propositional representation is a model of the situation 
described in the text. For example, given the text “he put 
the book on the table” a propositional representation like  

PUT(JOHN,ON(BOOK,TABLE))  

(where “he” is resolved to refer to John and the use of 
uppercase words correspond to concepts) might be 
generated. Note that this representation contains the 
inference that the book is on the table. The mapping from 
a linguistic text to a propositional representation of the 
corresponding situation has not been fully automated in 
the computational research of Kintsch (cf. Kintsch, 
1998). Later psychological research on situation models 



has established that the mental representation of 
situations corresponding to texts contain spatial-imaginal 
and temporal information, as well as propositional 
information (cf. Zwann & Radvansky, 1998). However, 
there are no computational accounts of how spatial-
imaginal information is represented in a situation model.  
 
We are currently in the process of developing an initial 
design for the situation model and the discussion in this 
section is preliminary and subject to change. However, a 
considerable amount of time, effort and resources have 
already been committed to this project and despite the 
preliminary nature of this system component, this project 
is well advanced by any reasonable measure for complex 
system development. 
 
7.1 Propositional Content 
 
In terms of representing propositional content, we adhere 
to the principle that the propositional (or logical) notation 
should be as close to English as possible (Hobbs, 1985). 
In this regard, the predicates used in the propositional 
representations are concepts that correspond to English 
words and are referred to as “word-concepts”. The 
primary distinction between a word and a word-concept 
is not based on the idea that concepts are non-linguistic or 
pre-linguistic, but that words are organized into an 
ontology which reflects their grammatical function, 
whereas word-concepts are organized into an ontology 
with reflects their semantic content.  
 
In this regard, we are considering the use of WordNet 
synonym sets (cf. Miller, 1995) as the source of word-
concepts. For example, the word “raise” is grammatically 
categorized as a transitive verb, whereas the word-
concept “raise-1-cncp” is semantically categorized as a 
change verb and “raise-2-cncp” is categorized as a 
motion verb in WordNet—in two common verb senses of 
“raise”. The word “raise” participates in linguistic 
processing and the generation of linguistic 
representations, whereas the word-concepts “raise-1-
cncp” and “raise-2-cncp” participate in situation model 
processing and in the generation of situation model 
representations. In the simplest case, there is a direct 
mapping from word to word-concept and the generation 
of a situation model representation from a linguistic 
representation is facilitated. However, besides often 
having multiple senses that need to be disambiguated to 
do the mapping, it may be that words map into word-
concepts based on a synonym of a word, rather than the 
word itself. For example, the word “radius” as used in 
“the effective radius is 5 miles”—which indicates the 
region around a waypoint at which a picture may be 
taken—may map into a “region-cncp” which could be 

used as the word-concept label for the WordNet synonym 
set for this sense of “radius”. The alternative of using 
WordNet synset id’s like 08628578 to represent this 
sense of “radius” is unattractive from a representational 
perspective. Another possibility is to tag the word with 
the synset id as in “radius-08628578-cncp”. In this case, 
“region” could also be tagged with the same id “region-
08628578-cncp” to indicate their synonymy.  
 
Besides specifying the nature of word-concepts 
corresponding to predicates, we need to specify how 
these predicates are integrated together into complex 
representations, and, ultimately, how these 
representations are mapped into the representational 
formalism of the ACT-R architecture which is essentially 
frame based—i.e. declarative memory (DM) chunks are 
named and typed sequences of slot-value pairs organized 
into a single inheritance hierarchy. We plan to borrow 
ideas from Hobbs (1985, internet) and Discourse 
Representation Theory (Kamp & Ryle, 1993) in the 
design of our propositional system of representation. In 
terms of the mapping to ACT-R DM chunks, an initial 
attempt to specify a mapping from the Cyc ontology of 
concepts into ACT-R declarative memory chunks is 
described in Ball, Rodgers & Gluck (2004). An outcome 
of that research was the realization that the Cyc ontology 
does not provide the domain specific concepts needed in 
our particular task domain. Many of the domain specific 
concepts have now been identified via analysis of the text 
chat corpus and task domain.  
 
7.2 Spatial Content 
 
To represent spatial aspects of the situation, we plan to 
use a spatial module developed for use with ACT-R and 
described in Douglass (2007). This module is designed to 
support the mental representation of objects and spatial 
relations between objects in a graphical display. An 
obvious use of this module is for spatially representing 
the graphical objects in the three monitors that constitute 
the graphical user interface (GUI) of the AVO. Another 
possible use is to represent the sequence of waypoints 
that must be visited during a reconnaissance mission.  
 
7.3 Imaginal Content 
 
There is abundant evidence that humans reason over 
imaginal representations (cf. Kosslyn, 2006; Zwann & 
Radvansky, 1998) and our task domain strongly suggests 
the need for such a capability. However, a computational 
implementation of an imaginal reasoning capability is 
currently outside the scope of the project—even though 
eventual development of such a capability is important 
for attaining full cognitive plausibility. 



7.4 Discourse Content 
 
A representation of the discourse participants (e.g. PLO, 
DEMPC, Intel Officer, AVO) is crucial to development 
of a functional synthetic teammate, as is a capability to 
determine the discourse acts that are inferable from the 
linguistic inputs. For example, when the PLO sends the 
message “I need to be above 3000” to the AVO, the AVO 
must infer that this is a request to increase the altitude of 
the UAV to be above 3000 feet, despite the fact that the 
linguistic input is a declarative statement which is 
ostensibly about the PLO, not the UAV, and there is no 
mention of what “3000” quantifies.  
 
As the discourse advances across missions, human 
teammates adapt to each other’s communications, 
standardizing forms and providing less and less explicit 
content in the messages. An adaptive capability to adopt 
standard forms and to infer implicit information from the 
evolving discourse context is needed (Matessa, 2000). 
That adaptive capability will hinge on the information 
available in the situation model. We would also like the 
synthetic teammate to be capable of reasoning about the 
mental state of the other team members, but this is 
currently outside the scope of our development efforts.  
 
8. Scaling up the Cognitive Architecture 
 
ACT-R was designed to support the development of 
small-scale cognitive models of specific laboratory 
phenomena. Since the advent of the first computational 
version of ACT-R, hundreds of small-scale models have 
been developed. The synthetic teammate project is one of 
a few attempts to develop a larger-scale model (or system 
of models) in ACT-R. This development is pushing ACT-
R in directions for which it was not originally designed. 
For example, the parallel spreading activation mechanism 
of ACT-R is computationally explosive on serial 
hardware. To support the computation of the activation of 
DM chunks corresponding to thousands of lexical items, 
we have integrated a relational database with ACT-R. 
The relational database allows us to externalize ACT-R’s 
DM and provides highly efficient database retrieval 
mechanisms that are allowing us to expand the model’s 
mental lexicon to a reasonable size. Further, the 
integration of a relational database allows us to maintain 
declarative knowledge acquired over many model runs—
a capability not previously available in ACT-R. 
 
The current language comprehension component   
contains over 2500 words in its mental lexicon. We plan 
to increase this substantially via integration of additional 
words from the WordNet mental lexicon which contains 
> 100,000 words. For this project, we expect to need 10-
15,000 words in the mental lexicon. Efforts are currently 

underway to map the entries in WordNet into the form 
needed by the language comprehension model. The 
mapping of nouns, adjective and adverbs is 
straightforward and can be automated, but the mapping of 
verbs with their varying argument structures is more 
problematic. Currently the model has some capability for 
word sense disambiguation (WSD), but the addition of a 
full-size mental lexicon will stress this capability beyond 
its limits. We are evaluating the use of Latent Semantic 
Analysis (cf. Landauer & Dumais, 1998) to provide 
additional WSD capability. In addition, it is not enough 
to just have a large lexicon. The model must be capable 
of taking appropriate action giving the linguistic input, 
and this requires a deeper level of understanding than is 
typical of most wide coverage, but superficial, 
computational linguistic systems.  
 

9. Empirical Validation 
 
An important goal of the project is to develop a synthetic 
teammate that is at once functional and cognitively 
plausible. In a system as complex as the synthetic 
teammate, empirical validation is a significant challenge. 
It is not practical to individually validate all the possible 
behaviors of the system. Instead, a few key behaviors will 
be selected for scrutiny and validated against empirical 
data. At the highest level, we will determine whether or 
not teams with a synthetic AVO show evidence of 
learning that all human teams in the UAV-STE 
demonstrate. We also plan to compare the communicative 
behavior of the synthetic teammate in terms of the “push” 
and “pull” of information against data that has been 
collected for human teams. It should be noted that this 
empirical validation will occur within the context of a 
functioning synthetic teammate, an atypical empirical 
approach which will lend credibility to the model in the 
sense that the model must do much more than just show 
evidence for aligning with a specific data set – the model 
must also function as a teammate with all the constraints 
on model behavior which that entails.  
 
Furthermore, it is an empirical goal of the language 
comprehension component to be able to process linguistic 
input in real-time on Marr’s algorithmic level (Marr, 
1982) where parallel and serial processing mechanisms 
are relevant (Ball, 2008). This goal imposes serious 
constraints on possible processing mechanisms—for 
example, eliminating non-deterministic mechanisms that 
rely on algorithmic backtracking and cannot, in principle, 
operate in real-time since such mechanisms slow down 
with the length of the linguistic input. 
 
Finally, not all components of the synthetic teammate are 
equally cognitively plausible. In the interest of building 



an end-to-end system, cognitive constraints on the 
development of the language generation and dialog 
manager components have been relaxed. Although less 
cognitively plausible, these components do a good job of 
modeling the language generation behavior of the 
individual AVO on which they were modeled. On the 
other hand, the task behavior component, which takes 
advantage of the perceptual-motor modules of ACT-R, is 
more closely tied to cognitive plausibility—down to the 
timing of attention fixations, key presses and mouse 
movements. 
 

10. Comparison to Other Approaches 
 
The use of the term “Synthetic Teammate” is borrowed 
from research ongoing at Chi Systems (cf. Scolaro & 
Santarelli, 2002).  In a panel session at BRIMS in 2004, 
there were presentations of several different approaches 
to the development of synthetic agents with natural 
language capabilities (Ball, 2004b). The Synthetic 
Teammate project aligns with this research. However, 
unlike other systems, the Synthetic Teammate project is 
based on text chat rather than spoken input. The 
challenges of processing spoken language limit the 
capabilities of spoken language systems (Stokes, 2001). 
Such systems typically assume a restricted vocabulary 
and limited forms of input in order to cope with this 
challenge. We have decided to use text chat to overcome 
these limitations. A similar approach has been adopted in 
the Situation Understanding BOT thru Language and 
Environment (SUBTLE) project (Marcus, et al., 2008). 
However, the SUBTLE project has the additional 
challenge of having to situate the synthetic teammate on a 
robot platform and act in the real world. 
 
The defining feature of this research is the focus on 
cognitive plausibility, often at a fine-grained level of 
cognitive fidelity uncharacteristic of most research in the 
development of synthetic agents.  
 
11. Conclusions 
 
The Synthetic Teammate project is a challenging project 
reminiscent of earlier research in Artificial Intelligence 
and Cognitive Science which focused on solving AI Hard 
Problems using cognitively motivated computational 
techniques. The current goal is to have an initial end-to-
end system in place by summer 2009. The initial system 
will be subjected to iterative refinement until a version 
which is capable of functioning as a teammate in the 
UAV-STE simulation is available. Once reasonable 
functionality is achieved, an experiment will be 
conducted in which the synthetic teammate will interact 
with human teammates, and the performance of this 

hybrid team will be compared against all human teams at 
the individual and team levels of analysis.  
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